A Multitasking Vanadium-Dependent Chloroperoxidase as an Inspiration for the Chemical Synthesis of the Merochlorins

Stefan Diethelm, Robin Teufel, Leonard Kaysser, and Bradley S. Moore*

Abstract: The vanadium-dependent chloroperoxidase Mcl24 was discovered to mediate a complex series of unprecedented transformations in the biosynthesis of the merochlorin meroterpenoid antibiotics. In particular, a site-selective naphthol chlorination is followed by an oxidative dearomatization/terpene cyclization sequence to build up the stereochemically complex carbon framework of the merochlorins in one step. Inspired by the enzyme reactivity, a chemical chlorination protocol paralleling the biocatalytic process was developed. These chemical studies led to the identification of previously overlooked merochlorin natural products.

In the past decades, marine microorganisms have emerged as valuable sources for structurally diverse secondary metabolites. In this context, the isolation and characterization of natural products from marine bacteria incorporating unusual carbon skeletons has been of particular interest. Merochlorins A (1) and B (2; see Scheme 1) were recently isolated from marine Streptomyces sp. CNH-189, thus constituting a new class of structurally unprecedented meroterpenoid secondary metabolites. The merochlorins are composed of a tetrahydroxynaphthalene fragment decorated with a rare terpenoid appendage. Furthermore, chlorination at C11/C12 adds to the structural complexity of these compounds. These unusual structural features along with the antimicrobial activity of the merochlorins attracted the interest of the synthetic community, thus culminating in elegant total syntheses of both merochlorin isomers, the chemical transformation suggests a mechanistic rational for the enzymatic reaction cascade. Most importantly, the applied concept showcases the yet largely unexplored potential of unusual biosynthesis pathways to serve as an inspiration for the development of novel synthetic reagent systems based on biosynthetic logic.

The identification of the prenylated naphthalene derivative as a key intermediate towards merochlorins A and B suggested an oxidative cyclization event to account for the formation of the polycyclic core structure of both natural products. Surprisingly, although numerous secondary metabolites have been suggested to arise from oxidative cyclization involving an aromatic core, no enzymatic system capable of

[**] We are grateful to Dr. Brendan Duggan for assistance with NMR measurements. This research was supported by the US National Institute of Health (NIH, Grant No. R01-AI047818) and by postdoctoral fellowships to R.T. from the Alexander von Humboldt Foundation, and to L.K. from the Swiss National Science Foundation (SNF).

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201405696.
mediating such a transformation has been characterized to date.\cite{7} In the meroclorin gene cluster we identified a number of oxidative enzymes, which were possible candidates to promote such a reaction, including an iron-sulfur cluster containing protein.\cite{3} Interestingly though, deletion of the gene mcl30, annotated to code for this protein, did not affect meroclorin production in the mutant strain. Moreover, the gene cluster contained the vanadium-dependent haloperoxidase (VHPO) Mcl24, which we suspected was likely to be responsible for introduction of the chlorine substituent. This enzyme particularly attracted our interest, as VHPO’s represent a class of biocatalysts still poorly characterized in the context of complex molecule biosynthesis.\cite{10,9} At the outset of our studies directed towards investigation of the final steps in the meroclorin biosynthesis, the nature of the oxidative cyclization event and the exact role of the haloperoxidase were largely unclear.

We commenced our efforts with the heterologous expression of octahistidyl-tagged Mcl24 in Escherichia coli to address the proposed C2 chlorination of 4.\cite{5} Accordingly, purified Mcl24 was subjected to a standard VHPO enzyme assay (pH 6.0 MES buffer, 50 mM KCl, 1 mM H2O2, 100 µM Na3VO4) using chemically synthesized 4\cite{10} as the putative enzyme substrate. To our surprise, analysis of the Mcl24 reaction suggested the direct formation of the natural products 1 and 2 by the chloroperoxidase enzyme, as indicated by reverse-phase HPLC retention time as well as UV and MS spectral data of the product peaks (Figure 1A). Isolation of the major reaction components and 1H NMR analysis confirmed the identity of the products formed, by comparison with spectral data of the isolated natural products.\cite{3} The unexpected finding that Mcl24 is able to catalyze multiple transformations, including a site-selective chlorination at C2 along with a highly unusual oxidative cyclization event, raised questions about the exact functional role of the enzyme in this reaction cascade. To gain further insight, we next tested various substrate analogues closely resembling the physiological substrate 4, as well as the simple terpene alcohols geraniol and nerolidol. Surprisingly, none of these alternative substrates were accepted by the enzyme (see the Supporting Information for details). We further subjected Mcl24 to a monochlorodimedone (MCD) assay, a standard protocol to assess the activity of halonium-generating halogenating enzymes.\cite{11} As indicated in Figure 1B, we found that Mcl24 is not able to oxidize MCD under standard assay conditions in the presence of chloride only.

However, when KBr was added to the reaction mixture, rapid disappearance of the MCD signal was observed. We recently reported a similar observation with the vanadium-dependent chloroperoxidase NapH1, which is involved in a highly selective chloroether formation in the biosynthesis of the napyradiomycins.\cite{6} As such, these results raise questions about the feasibility of the MCD assay to properly reflect the natural role of halogenating enzymes.

On the basis of these initial observations, we hypothesized that an active chloronium species could trigger an oxidative dearomatization of the highly electron-rich naphthol moiety in 4. The thus generated reactive intermediate would then initiate a terpene cyclization to arrive at the polycyclic framework of the meroclorins. To gain further insight into the details of such an enzyme-catalyzed oxidative naphthol dearomatization/cyclization cascade, we opted for the development of a parallel chemical protocol inducing oxidative cyclization of 4 through a chlorination event. Although oxidative dearomatization/cyclization cascades initiated by a halogenating species are, to our knowledge, unprecedented in the chemical literature,\cite{12} we were curious, if chemical chlorination conditions could be identified that would enable generating cyclized products starting with 4. Accordingly, various chlorination conditions were evaluated towards this end as outlined in Table 1 (see the Supporting Information for further details). In particular, we sought protocols mediating selective ortho-chlorination of phenol and naphthol derivatives, thus paralleling the chlorination reactivity of Mcl24.\cite{13} 2,3,4,5,6,6-Hexachloro-2,4-cyclohexadien-1-one has been reported to effect such transformations in the presence of DMF as a cosolvent. Subjecting 4 to these reaction conditions led to complete decomposition of the starting material (entry 1).\cite{14} Interestingly though, addition of 5 equivalents of triethylamine to this reaction effected formation of trace quantities of a set of products with very similar retention times on reverse-phase HPLC as well as identical UV and MS spectra to that of the enzymatic products 1 and 2 (entry 2).

Following this initial result, we set out to further study the oxidative cyclization of 4. A number of standard chlorinating reagents failed to give any of the previously observed products (Table 1, entries 3–6). Interestingly, the use of hypochlorous acid, the generally postulated reactive species of chloroperoxidases, only led to decomposition of 4 (entry 7).\cite{15} At this point we began to suspect that the amine additive in the previously successful reaction condi-

![Figure 1. Reactivity of Mcl24. A) Reverse-phase HPLC chromatogram (UV at λ = 254 nm) of the reaction of Mcl24 with 4: Mcl24 (50 µg mL\(^{-1}\)), KCl (50 mM), Na3VO4 (100 µM), H2O2 (1 mM), 4 (100 µmol), pH 6.0 MES buffer (50 mM); (a). * = non-enzymatic oxidized degradation product. Negative control: no substrate 4 (b). Negative control: no enzyme (c). B) Spectrophotometric MCD assay for Mcl24. The reaction was initiated by addition of H2O2. As no decrease in absorbance was observed in the presence of chloride, KBr was added to the mixture after 7 min.](image-url)
Table 1: Chemical chlorination of sp. CNH-189 revealed that all of the observed merochlorination of the natural merochlorin producer strain Streptomyces sp. CNH-189 revealed that all of the observed merochlorins A (8 minor amounts of dichloro-merochlorin B (14)) and B (8), along with only minor amounts of isomers 6, 7, and 8. Reinvestigation of the natural merochlorin producer strain Streptomyces sp. CNH-189 revealed that all of the observed merochlorin isomers were in fact produced by this organism, albeit in only minor amounts (see the Supporting Information for details).

The inverted selectivity profiles of the chemical and the enzymatic oxidative cyclization of 4 suggested implications on the reaction path Mel24 follows. Remarkably, the enzyme seems to control both, the site-selectivity of halogenation as well as the timing of the chlorination reaction in respect to the oxidative cyclization step. In contrast to the NCS/iPr2NH reaction, Mel24 preferentially chlorinates at C2 in 4 prior to cyclization. On the other hand, treatment of 4 with NCS/iPr2NH leads to an initial oxidative cyclization followed by optional chlorination at C7. In fact, conducting the chemical chlorination at low temperature (−78°C) prevents this chlorination step, thus leading to the exclusive production of the isomers 6 and 8 (Table 1, entry 10 and the Supporting Information). The origin of the distinct reactivity profile of the enzymatic reaction remains unclear at this point.

The studies undertaken towards chemical oxidative cyclization of 4 led us to propose a mechanistic rationale for merochlorin production. As mentioned before, we surmise that an in situ generated chloramine intermediate is the active oxidant for the chemical transformation. Interestingly, a lysine chloramine intermediate is postulated for the rebecca-myin flavin-dependent chlorinase RebH.[19] The chlorinated amino acid side chain was proposed to transfer its halogen atom in a highly selective manner to the enzyme substrate. It seems attractive to invoke a similar intermediate with a chlorinated amino acid side chain to account for the unusual selectivity pattern observed for Mel24. We further hypothesize that the active chlorinon species initiates the enzymatic reaction by selective C2 chlorination of 4 (Scheme 2).[20] A second chlorination step would then likely produce the aromatic hypochlorite species 10, and upon loss of chloride would give the benzylic carbocation 11.[21] The proposed formation of 10 is also consistent with the observation that a NaH/NCS reagent combination can promote cyclization of 4 (Table 1, entry 10). Finally, a cation-induced terpene cyclization would explain formation of the merochlorins via the intermediate 12.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Chlorinating agent</th>
<th>Additive</th>
<th>Solvent</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HCDO</td>
<td>DMF (100 equiv)</td>
<td>CCl₄</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>HCDO</td>
<td>NEt₃ (5 equiv)</td>
<td>CCl₄</td>
<td>&lt; 5</td>
</tr>
<tr>
<td>3</td>
<td>NCS</td>
<td>–</td>
<td>CH₂Cl₂</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>TCCA</td>
<td>–</td>
<td>CH₂Cl₂</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>tBuOCl</td>
<td>–</td>
<td>CH₂Cl₂</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>SOCl₂</td>
<td>iPr₂NH (2 equiv)</td>
<td>toluene</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>HClO</td>
<td>–</td>
<td>acetone</td>
<td>–</td>
</tr>
<tr>
<td>8†</td>
<td>NCS</td>
<td>iPr₂NH (2 equiv)</td>
<td>CH₂Cl₂</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>tBuNCl₂</td>
<td>–</td>
<td>CCl₄</td>
<td>ca. 5</td>
</tr>
<tr>
<td>10‡</td>
<td>NCS</td>
<td>NaH (2 equiv)</td>
<td>CH₂Cl₂</td>
<td>22</td>
</tr>
</tbody>
</table>

[a] Reaction conditions: substrate (5 mg, 12.6 μmol), chlorinating agent (2.0 equiv), additive, solvent (1 mL), 25°C, 2 h. [b] Combined yield of product mixture after silica gel purification. [c] At 0°C. [d] At −78°C. [e] Only the nonchlorinated isomers 6 and 8 produced. DMF = N,N-dimethylformamide. HCD0 = 2,3,4,5,6,6-hexachloro-2,4-cyclohexadien-1-one, NCS = N-chlorosuccinimide, TCCA = trichloroisocyanuric acid.
In conclusion, the characterization of the vanadium-dependent chloroperoxidase Mcl24 led to the discovery of an unprecedented enzymatic reaction cascade. Mcl24 was found to catalyze a site-selective naphthol chlorination prior to the initiation of an oxidative dearomatization event which further triggers a terpene cyclization. We were able to shed light on the characteristics of the enzymatic reaction by the development of a synthetic chloroperoxidation protocol mimicking Mcl24 reactivity. In addition, this novel reagent system enabled the total synthesis of previously unnoticeable merochlorin natural products in only five steps. The applied concept stresses the potential of unusual biosynthetic transformations to serve as an inspiration for the development of synthetic reagent systems.

Received: May 27, 2014
Published online: August 21, 2014

Keywords: biomimetic synthesis · chlorine · enzymes · oxidation · vanadium

[10] The synthesis of 4 is reported in Ref. [5].
[12] For a comprehensive review on oxidative dearomatization in chemistry, see: S. Quideau, L. Pousseygué, D. Defieux, Synlett 2008, 467–495. See also Ref. [7b].
[15] Slow addition over 1 hour (syringe pump) of only 1 equivalent of HOCI to a solution of 4 in acetone equally led to complete decomposition of the starting material.
[17] The use of primary amines, such as BuNH₂, proved equally effective (see the Supporting Information for further detail).
[20] C2-chlorinated pre-merochlorin could not be detected by HPLC and HR-LCMS analysis in either the Mcl24 or the NCS/Pr/NH reaction. This can likely be attributed to the high oxygen sensitivity of pre-merochlorin compounds and resulting rapid oxidative decomposition of such intermediates.